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NUCLEATION OF CRACKS IN A PERFORATED FUEL CELL

UDC 539.375V. M. Mirsalimov

A mathematical model is constructed for crack nucleation in an isotropic fuel cell (heat-releasing
solid material) attenuated by a biperiodic system of cooling cylindrical channels with a circular cross
section. Cracks are assumed to appear with increasing heat-release intensity in the bulk of the mate-
rial. The solution of the problem on equilibrium of an isotropic perforated fuel cell with crack nuclei
reduces to the solution of a nonlinear singular integral equation with a Cauchy-type kernel. The
solution of the latter equation yields the forces in the band of crack nucleation. The condition of
crack nucleation is formulated with allowance for the criterion of ultimate extension of bonds in the
material.
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Formulation of the Problem. Design of certain types of fuel cells in nuclear reactors requires calculating
temperature stresses in a continuous medium with cylindrical channels aligned in parallel. The problem of thermoe-
lastic equilibrium of a plane attenuated by a biperiodic system of holes was considered in [1–3]. As the heat-release
intensity q increases, zones of elevated stresses are formed in such a material around the holes; these zones are
arranged biperiodically. Surface cracks can appear in zones with elevated stresses. The problem of crack nucleation
is an important problem of fracture mechanics. Formulation of this problem substantially expands the original
Griffith concept, which implies that there are always many tiny cracks in any material. Formation (nucleation) of
a crack under loading is consistent with fractographic observations. As the heat-release intensity increases, there
arise pre-fracture zones on the hole surface, which are modeled as regions with weakened interparticle bonds in
the material. Interaction of the faces of these zones is modeled by introducing a band of pre-fracture of bonds
between these faces with a prescribed deformation diagram. The physical nature of these bonds and the sizes of
the pre-fracture zones depend on the type of the material. As these zones (interlayers in the material) are small, as
compared with the remaining part of the configuration, they may be mentally removed and replaced by cuts whose
surfaces interact with each other according to a certain law corresponding to the action of the removed material.
Allowance for these effects in problems of fracture mechanics is an important but also a difficult problem.

In the case considered, crack nucleation in the material is the process of the transition of the pre-fracture
zone to the zone with broken bonds between the material surfaces. The size of the pre-fracture zone is unknown in
advance and has to be determined during solving the problem.

The studies of the emergence of zones with a distorted structure of the material show that the initial stage
of the pre-fracture zone is a narrow extended layer; as the load increases, a secondary system of zones containing
the material with partly violated bonds suddenly appears [4–8].

We use the following assumptions: 1) the heat-release intensity is uniform over the entire bulk of the
material, and the material can freely expand in all directions; 2) heat removal occurs through the channel surfaces
only; 3) the maximum temperature difference in the medium is small; hence, the properties of the material in this
range of temperatures remain unchanged; 4) the material is not affected by external forces; it experiences only the
action of internal thermal stresses; 5) the material is in the steady state.
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Fig. 1. Schematic of the problem of crack nucleation in a heat-releasing material.

The mathematical description of crack nucleation in a material with voids reduces to a two-dimensional
problem of thermal elasticity for a perforated heat-releasing material with pre-fracture bands in the medium. The
pre-fracture bands are aligned with the maximum tensile stresses.

Let there be a heat-releasing material with a biperiodic system of circular holes of radius λ (λ < 1) with the
center at the points

Pmn = mω1 + nω2, ω1 = 2, ω2 = 2h eiα,

h > 0, Im ω2 > 0 (m, n = 0,±1,±2, . . .).
(1)

Symmetric straight-line pre-fracture bands emanate from the hole contours (Fig. 1). The contours of the circular
holes [see (1)] are free from external loads. Heat transfer in fuel cells occurs mainly through heat conduction;
therefore, the calculation of temperature fields reduces to the solution of problems of the heat-conduction theory in
the presence of internal heat sources [2, 3]. Such calculations allow one to choose correctly the heat-release power
in fuel cells and their basic dimensions, to find the value and determine the character of thermal stresses in the
medium.

By virtue of symmetry of the boundary conditions and geometry of the domain D occupied by the material,
the temperature and stresses are biperiodic functions with the fundamental periods ω1 and ω2. The tempera-
ture T (x, y) in the domain D is found by solving the heat-conduction equation

ΔT + q/δ = 0

with the condition on the hole contours
∂T

∂r
=

h0

δ
(T0 − T ).

Here Δ is the Laplace operator, δ is the thermal conductivity of the medium, h0 is the heat-transfer coefficient, and
T0 is the temperature of the cooling medium.

Interaction of the faces of the pre-fracture band (bonds between the faces) constrains crack nucleation.
In the mathematical description of interaction of the pre-fracture band faces, we assume that they have

certain bonds with a prescribed deformation laws. The thermal loads on the material generate normal forces p(x)
in bonds connecting the pre-fracture band faces.

Hence, normal stresses p(x) are applied to the band faces. These stresses are unknown in advance and have
to be determined during solving the boundary-value problem of fracture mechanics with the conditions on the hole
contours and pre-fracture band faces, respectively,

σr − iτrθ = 0, σy − iτxy = p(x). (2)

The basic relations of the problem posed have to be supplemented by an expression relating the opening of
the pre-fracture band faces and the forces in the bonds. Without loss of generality, we present this relation as [8]

v+(x, 0) − v−(x, 0) = C(x, p)p(x), (3)
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where the function C(x, p(x)) can be considered as tension-dependent effective compliance of bonds; v+ − v− is the
opening of the pre-fracture band faces.

For the critical heat-release intensity for crack nucleation to be determined, the problem formulation has to
be supplemented by the condition (criterion) of crack emergence (breakdown of interparticle bonds in the material).
We use the criterion of the critical opening of the pre-fracture band faces

v+ − v− = δc, (4)

where δc is the characteristic of material resistance to cracking.
The additional condition (4) allows one to determine the parameters of the heat-releasing medium at which

the crack emerges.
Based on the Kolosov–Muskhelishvili formulas [9] and the boundary conditions on the contours of the circular

holes and pre-fracture band faces (2), the problem reduces to determining two functions Φ(z) and Ψ(z), which are
analytical in the domain D, from the boundary conditions

Φ∗(τ) + Φ∗(τ) − [τ̄Φ′
∗(τ) + Ψ(τ)] e2iθ +q∗λ2/32 = 0; (5)

Φ∗(t) + Φ∗(t) + t Φ′∗(t) + Ψ(t) + 3q∗t2/32 = p(t), (6)

where τ = λ eiθ + mω1 + nω2 (m, n = 0,±1,±2, . . .), t is the affix of the points of the pre-fracture band faces,
q∗ = αEq/δ, α is the coefficient of linear temperature expansion, E is the modulus of elasticity of the material,
Φ∗(z) = Φ(z)−αEF (z)/4, and F (z) is a function analytical in the domain D, which satisfies the following boundary
condition on the hole contours:

2 Re
[
eiθ

(
F ′(z) − qz̄

4δ

)]
=

h0

δ

(
T0 − F (z) − F (z) +

qzz̄

4δ

)
. (7)

Solution of the Boundary-Value Problem. The solution of the boundary-value problem (5)–(7) is
sought in the form

F (z) = β0z
2 + β1ν(z) + a0 +

∞∑
k=0

a2k+2
λ2k+2γ(2k)(z)

(2k + 1)!
; (8)

Φ∗(z) = Φ1(z) + Φ2(z), Ψ(z) = Ψ1(z) + Ψ2(z); (9)

Φ1(z) =
1
2π

∫

L

g(x)ζ(x − z) dx + A,

Ψ1(z) =
1
2π

∫

L

[ζ(x − z) + Q(x − z) − xγ(x − z)] g(x) dx + B;
(10)

Φ2(z) = β∗
0z2 + β∗

1ν(z) +
∞∑

k=0

α2k+2
λ2k+2γ(2k)(z)

(2k + 1)!
,

Ψ2(z) = dz2 − β∗
1ζ∗(z) +

∞∑
k=0

β2k+2
λ2k+2γ(2k)(z)

(2k + 1)!
−

∞∑
k=0

α2k+2
λ2k+2Q(2k+1)(z)

(2k + 1)!
,

(11)

β∗
0 = −αEβ0/4, β∗

1 = −αEβ1/4,

where γ(z) is the elliptic Weierstrass function, ζ(z) is the Weierstrass zeta function, Q(z) is a special meromorphic

function [10], ν(z) = −
∫ ∫

γ(z) dz, ζ∗(z) = −
∫

Q(z) dz, g(x) = (2μ/(1 + κ0)) ∂[v+(x, 0) − v−(x, 0)]/∂x is the

sought function, μ is the shear modulus of the material, κ0 = 3 − 4ν, ν is Poisson’s ratio of the material, and A

and B are constants. In Eqs. (10), the integrals are taken over the segment L = [−l,−λ] ∪ [λ, l].
Let us give the dependences that have to be satisfied by the coefficients of Eqs. (8)–(11). The conditions of

symmetry with respect to the coordinate axes yield the equalities

Im a2k = 0, Im α2k = 0, Im β2k = 0, k = 1, 2, . . . .
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Because of biperiodicity of the temperature and stress fields and by virtue of self-consistency of the problem and
periodicity of the main vector of forces acting on the arc connecting two congruent points in the domain D, we have

β0 =
q

16δπi
(δ1ω̄2 − δ2ω̄1), β1 =

q

8δπi
(ω̄1ω2 − ω̄2ω1), d =

q∗
64πi

(γ2ω̄1 − γ1ω̄2),

(A + Ā)ωk + B̄ωk = δka + γ̄ka + δk(a + ā) + β2λ
2δk + α2λ

2(δk + γk) − D̄k (k = 1, 2),

a = − 1
2π

∫

L

tg(t) dt,

Dk = −2
3

β∗
0 (ω2

kω̄k − ω̄3
k) + β∗

1

(
ck − 3

8
δ̄kω̄2

k +
1
4

δkωkω̄k − 1
24

γkω2
k

)
,

(12)

δk = 2ζ(ωk/2), γk = 2Q(ωk/2)− ω̄kγ(ωk/2),

ck = 2ξ̄(ωk/2) − 2ν∗(ωk/2) + ω̄kν(ωk/2) (k = 1, 2),

ξ(z) =
∫ ∫

ν(z) dz, ν∗(z) =
∫

ζ∗(z) dz.

The notation of the constants in the biperiodic system is the same as that in [10]. The constants A and B are
found from system (12), and these constants are real. They are conveniently presented as a sum of two constants:

A = A∗ + A∗∗, B = B∗ + B∗∗.

Here A∗∗ and B∗∗ depend only on the coefficients α2 and β2, i.e., are found from system (12) under the assumption
that a = 0.

We can readily verify that the general presentations (8)–(11) determine a class of symmetric problems with
a biperiodic distribution of temperature and stresses. The unknown function g(x) and the constants α2k and β2k

should be determined from the boundary conditions (6), (7). By virtue of biperiodicity, the system of the boundary
conditions (6) is replaced by one functional equation, for instance, on the contour τ = λ exp (iθ), and system (7) is
replaced by the boundary condition on L.

To obtain equations for the coefficients α2k and β2k of the functions Φ2(z) and Ψ2(z), we present the
boundary condition (6) in the form

Φ2(τ) + Φ2(τ) − [τ̄Φ′
2(τ) + Ψ2(τ)] e2iθ +q∗λ2/32 = f1(θ) + if2(θ), (13)

where

f1(θ) + if2(θ) = −Φ1(τ) − Φ1(τ) + [τ̄Φ′
1(τ) + Ψ1(τ)] e2iθ . (14)

We assume that the function f1(θ) + if2(θ) is decomposed on the contour |τ | = λ into a Fourier series. By virtue
of symmetry, this series has the form

f1(θ) + if2(θ) =
∞∑

k=−∞
A2k e2kiθ , Im A2k = 0,

A2k =
1
2π

2π∫

0

(f1(θ) + if2(θ)) e−2kiθ dθ (k = 0,±1,±2, . . . ).
(15)

Substituting here expression (14) with allowance for Eq. (10), changing the order of integration, and calculating the
integrals with the use of the residue theory, we find

A0 = −A − Ā − 1
2π

∫

L

g(t)f0(t) dt, A2 = B − 1
2π

∫

L

g(t)f2(t) dt,

A2k = − 1
2π

∫

L

g(t)f2k(t) dt, k = −1,±2, . . . ,
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f0(t) = 2ζ(t), f2(t) = λ2γ′(t)/2 + tγ(t) − ζ(t) − Q(t),

f2k(t) =
(2k − 1)λ2k

(2k)!
γ(2k−1)(t) +

λ2k−2

(2k − 2)!
[γ(2k−3)(t) − Q(2k−2)(t) + tγ(2k−2)(t)], k = 2, 3, . . . ,

f−2k(t) = − λ2k

(2k)!
γ(2k−1)(t), k = 1, 2, . . . .

Replacing the functions Φ2(τ), Φ2(τ), Φ′
2(τ), and Ψ2(τ) in the left side of the boundary condition (13) by

their expansions into Laurent series in the neighborhood of the point z = 0, substituting the Fourier series (15) into
the right side of (13), and comparing the coefficients at identical powers of exp (iθ), we obtain two infinite linear
systems of algebraic equations with respect to the coefficients α2k and β2k [10, 11]:

α2j+2 =
∞∑

k=0

aj,kα2k+2 + bj (j = 0, 1, . . . ), aj,k = (2j + 1)γj,kλ2j+2k+2,

γ0,0 =
3
8

g2λ
2 + K2 +

2λ2K0K3

1 − 2λ2K1
+

∞∑
i=1

(2i + 1)g2
i+1

24i+4
λ4i+2,

γ0,k = − (2k + 2)ρk+1

22k+2
+

(2k + 4)!gk+2λ
2

2!(2k + 2)!22k+4
+

2λ2K3gk+1

22k+2(1 − 2λ2K1)
+

∞∑
i=1

(2j + 2i + 1)!gj+1gk+i+1λ
4i+2

(2k + 1)!(2i)!22k+4i+4
(k = 1, 2, . . . ),

γj,0 = − (2j + 2)ρj+1

22j+2
+

(2j + 4)!gj+2λ
2

2!(2j + 2)!22j+4
+

2λ2K0gj+1

(1 − 2λ2K1)22j+2
+

∞∑
i=1

(2j + 2i + 1)!gi+1gj+i+1λ
4i+2

(2j + 1)!(2i)!22j+4i+4
(j = 1, 2, . . . ),

γj,k = γk,j = − (2j + 2k + 2)!ρj+k+1

(2j + 1)!(2k + 1)!22j+2k+2
+

(2j + 2k + 4)!gj+k+2λ
2

(2j + 2)!(2k + 2)!22j+2k+4

(16)

+
1 + 2λ2K1

1 − 2λ2K1

gj+1gk+1λ
2

22j+2k+4
+

∞∑
i=1

(2j + 2i + 1)!(2k + 2i + 1)!gj+i+1gk+i+1λ
4i+2

(2j + 1)!(2k + 1)!(2i + 1)!(2i)!22j+2k+4i+4
(j, k = 1, 2, . . . ),

b0 = A′
2 −

A′
0λ

2K3

1 − 2λ2K1
−

∞∑
k=0

gk+2λ
2k+4

22k+4
A′

−2k−2,

bj = A′
2j+2 −

(2j + 1)A′
0gj+1λ

2j+2

22j+2(1 − 2λ2K1)
−

∞∑
k=0

(2j + 2k + 3)!gj+k+2λ
2k+2j+4

(2j)!(2k + 3)!22j+2k+4
A′

−2k−2 (j = 1, 2, . . . );

β2 =
1

1 − 2λ2K1

(
2λ2K0 − A′

0 + 2
∞∑

k=1

gk+1λ
2k+2

22k+2
α2k+2

)
,

β2j+4 = (2j + 3)α2j+2 +
∞∑

k=0

(2j + 2k + 3)!gj+k+2λ
2j+2k+4

(2j + 2)!(2k + 1)!22j+2k+4
α2k+2 − A′

−2j−2 (j = 0, 1, . . . ).

(17)

Here

A′
0 = β∗

1(1 − 2 lnλ) − q∗λ2

32
− 2A∗ − 1

2π

∫

L

g(t)f0(t) dt,

A′
2 = β∗

0λ2 + B∗ − 1
2π

∫

L

g(t)f2(t) dt, A′
−2 = β∗

0λ2 + A−2,
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A′
4 = dλ2 − 3g2λ

4

64
β∗

1 + A4, A′
−2k−2 =

gk+1λ
2k+2

(2k + 2)!22k+2
β∗

1 + A−2k−2,

A′
2k+2 = β∗

1

(λ2kρk

22k
− (2k + 1)gk+1λ

2k+2

22k+2(2k + 2)

)
+ A2k+2,

gk =
∑
m,n

′ 1
T 2k

0

, ρk =
∑
m,n

′ T̄0

T 2k+1
0

, T0 =
1
2

Pmn,

K0 =
δ1

ω1
+

2πi

ω1ω̄2 − ω̄1ω2
, K1 =

πi

ω2ω̄1 − ω1ω̄2
, K3 = K0,

K4 =
γ1 − δ1

ω1
− 4πi

ω1ω̄2 − ω̄1ω2
;

the prime at the summation sign means that the subscripts m = n = 0 do not participate in the summation process.
We require that functions (9)–(11) satisfy the boundary condition on the crack faces L and obtain a singular

integral equation with respect to g(x)
1
2π

∫

L

g(t)K(t − x) dt + H(x) = p(x) on L, (18)

where

K(x) = 3ζ(x) + Q(x) − xγ(x), H(x) = 3q∗λ2/32 + 2A + B + 2Φ2(x) + xΦ′
2(x) + Ψ2(x),

2A + B = [(a + α2λ
2)(δ1 + γ1) + (2a + β2λ

2)δ1 − D1]/ω1.

The singular integral equation (18) and also systems (16) and (17) are the governing resolving equations of the
problem, which allow determining the function g(x) and the coefficients α2k and β2k. Knowing the functions Φ2(z),
Ψ2(z), and g(x), we can find the stress-strain state of the heat-releasing material with pre-fracture bands.

Technique of the Numerical Solution and Analysis. Using, in the basic parallelogram of the periods,
the expansions

ζ(z) =
1
z
−

∞∑
j=1

gj+1z
2j+1

22j+2
, γ(z) =

1
z2

+
∞∑

j=1

(2j + 1)gj+1z
2j

22j+2
,

Q(z) =
∞∑

j=1

(2j + 2)ρj+1

22j+2
z2j+1,

we can bring Eq. (18) to the conventional form

1
π

∫

L

g(t) dt

t − x
+

1
π

∫

L

g(t)K0(t − x) dt + H(x) = p(x). (19)

Replacing the variables as t = ξl and x = ξ0l and applying some simple transformations, we bring Eq. (19) to the
form

1
π

∫

L0

g∗(ξ)
ξ − ξ0

dξ +
1
π

∫

L0

g∗(ξ)K0(ξ − ξ0) dξ + H∗(ξ0) = f∗(ξ0),

g∗(ξ) = g(t), L0 = [−1,−λ1] ∪ [λ1, 1], λ1 = λ/l,

K(ξ) =
∞∑

j=0

Kj

( l

2

)2j+2

ξ2j+1, K0 = ω1 Re δ1, Kj = gj+1, (20)

K∗
0 = −ω1

2
(γ̄1 + δ̄1), K∗(ξ) =

∞∑
j=0

K∗
j

( l

2

)2j+2

ξ2j+1,
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K∗
j = (j + 1)(ρj+1 − gj+1), j = 1, 2, . . . ,

K0(ξ) = K∗(ξ) − K(ξ), K∗(ξ0) = H(ξ0l), f∗(ξ0) = p(ξ0l).

Taking into account that g∗(ξ) = −g∗(−ξ), we can write Eq. (20) as

2
π

1∫

λ1

ξg∗(ξ)
ξ2 − ξ2

0

dξ +
1
π

1∫

λ1

K∗
0 (ξ, ξ0)g∗(ξ) dξ + H∗(ξ0) = f∗(ξ0),

K∗
0 (ξ, ξ0) = K0(ξ − ξ0) + K0(ξ + ξ0), λ1 � ξ0 � 1.

(21)

We transform Eq. (21) to a form more convenient for finding its approximate solution by replacing the variables

ξ2 = u =
1 − λ2

1

2
(τ + 1) + λ2

1, ξ2
0 = u0 =

1 − λ2
1

2
(η + 1) + λ2

1.

Thereby, the interval of integration [λ1, 1] transforms to the interval [−1, 1], and the transformed Eq. (21) acquires
the standard form:

1
π

1∫

−1

g∗(τ)
τ − η

dτ +
1
π

1∫

−1

g∗(τ)B(η, τ) dτ + H∗(η) = f∗(η). (22)

Here

g∗(τ) = g∗(ξ), B(η, τ) =
1 − λ2

1

2

∞∑
j=0

(K∗
j − Kj)

( l

2

)2j+2

uj
0Aj ,

Aj =
[
2j + 1 +

(2j + 1)(2j)(2j − 1)
1 · 2 · 3

( u

u0

)
+ . . . +

(2j + 1)(2j)(2j − 1) · · · 1
1 · 2 · 3 · · · (2j + 1)

( u

u0

)j]
,

H∗(η) = H∗(ξ0), f∗(η) = f∗(ξ0).

To construct the solution of the singular integral equation, we use the method of solving singular integral
equations described in [12, 13]. In addition to the singularity in the Cauchy kernel, the singular integral equation
(22) has a motionless singularity at the point where the pre-fracture band reaches the surface of the circular hole.
In this case, the function g(x) at the points x = ±λ has a singularity, which differs from the root singularity. The
character of this singularity can be determined by analyzing the integral equation (22) [14]. In contrast to the case

with the internal pre-fracture band, the integral is

l∫

0

g(t) dt = C �= 0. The constant C is expressed through the

opening of the pre-fracture band on the surface of the circular hole and has to be determined after the singular
integral equation is solved.

In the case considered, we should have used the method of solving the integral equation based on the Gauss–
Jacobi quadrature formula. As the expressions for the functions B(η, τ) and H∗(η) are extremely cumbersome, it
is difficult to determine the singularities of the function g∗(η) at the points x = ±λ. In addition, it should be noted
that the gain in convergence reached in the refined method is lost because the formulas for the matrix coefficients in
the system are too cumbersome. We use another, simplified approach to the numerical solution of integral equations
of the type (22). The efficiency of this method has been verified by solving numerous problems [4, 11–13, 15]. As
the stresses in the heat-releasing material are bounded, the solution of the singular integral equation (22) has to be
found in the class of functions bounded everywhere. Let us present this solution in the form

g∗(η) = g0(η)
√

1 − η2,

where g0(η) is a new unknown regular function.
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Using quadrature formulas, we can transform the integral equation (22) to a system of M + 1 algebraic
equations

M∑
m=1

g0(τm)
M + 1

sin2 πm

M + 1

( 1
τm − ηr

+ B(τm, ηr)
)

= π[H(ηr) + p(ηr)]

(r = 1, 2, . . . , M + 1).
(23)

Here

τm = cos
πm

M + 1
(m = 1, 2, . . . , M),

ηr = cos
2r − 1

2(M + 1)
π (r = 1, 2, . . . , M + 1).

The resultant algebraic system of M + 1 equations (23) for determining the unknowns
g0(τ1), g0(τ2), . . . , g0(τm), and (l − λ)/λ satisfies an additional condition at which the solution in the class of bounded
functions exists (see [12, p. 326]).

The right side of system (23) contains unknown values of stresses p(ηr) at the node points that belong to
the pre-fracture band. The unknown stress in the bonds, which arises on the faces of the pre-fracture band, is
determined from an additional condition, namely, Eq. (3). Using the solution obtained, relation (3) can be written
as

g(x) =
2μ

1 + κ0

d

dx
[C(x, p)p(x)]. (24)

This equation serves to determine the forces p(x) in the bonds.
Relation (24) is presented as

−1 + κ0

2μ

x∫

l

g(x) dx = C(x, p)p(x). (25)

To construct the missing equations, we require that conditions (25) be satisfied at the node points contained in the
pre-fracture band (λ, l). As a result, we obtain an algebraic system of M equations for determining the approximate
values of p(ηm) (m = 1, 2, . . . , M):

C0g0(η1) = C(η1, p(η1))p(η1),

C0(g0(η1) + g0(η2)) = C(η2, p(η2))p(η2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C0

M∑
m=1

g0(ηm) = C(ηM , p(ηM ))p(ηM ).

(26)

Here C0 = −(1 + κ0)π(l − λ)/(2μM). As the size of the pre-fracture band is unknown, the combined algebraic
system (16), (17), (23), (26) is nonlinear, even if the bonds are linear. To avoid solving a nonlinear system of
equations with linear bonds, we use an inverse method; in particular, we assume that the size of the pre-fracture
band is prescribed and the loading parameter q∗ is determined in the course of the solution. In such a method of the
solution, the algebraic system (16), (17), (23), (26) is linear. In numerical calculations, we assumed that M = 30,
which corresponds to the interval of integration being divided into 30 Chebyshev nodes. The calculations were
performed by the Gauss method with selection of the basic element for regular normalized grids of hole centers.
We studied the cases with holes being located at the apices of a square grid (h = 1 and α = π/2) and a triangular
grid (h = 1 and α = π/3). The numerical calculations yielded the length of the pre-fracture band, the forces
in the bonds, and the distances between the opposite faces of the pre-fracture band as functions of the loading
parameter q∗.

In the case of a nonlinear law of bond deformation, the forces in the pre-fracture band are determined by
an iterative algorithm similar to the method of elastic solutions [16]. The law of deformation of interparticle bonds
(adhesion forces) is assumed to be linear at v+ − v− � v∗.
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Fig. 2. Dimensionless length of the pre-fracture band d versus the heat-release intensity q∗/σs for
different values of the hole radius: λ = 0.2 (1), 0.3 (2), 0.4 (3), and 0.5 (4).

Fig. 3. Forces in the bonds p/q∗ versus the dimensionless length of the pre-fracture band (notation
the same as in Fig. 2).
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Fig. 4. Critical heat-release intensity in the material (q∗)∗/σs versus the dimensionless opening
δ∗/(l − λ) for x = ±λ (notation the same as in Fig. 2).

The first step of iterative calculations is solving system (16), (17), (23), (26) for linearly elastic interparticle
bonds. Subsequent iterations are performed only if v+ − v− > v∗ in some part of the pre-fracture zone. In such
iterations, one has to solve a system of equations in each approximation for quasi-elastic bonds with effective
compliance varied along the faces of the pre-fracture band and depending on the magnitude of forces in the bonds,
which is calculated at the previous step. The calculation of effective compliance is similar to determining the secant
modulus in the method of variable parameters of elasticity [17]. The process of consecutive approximations is
terminated when the forces along the pre-fracture band at two successive iterations are almost identical.
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The nonlinear part of the curve of bond deformation was approximated by a bilinear dependence [8] whose
ascending segment corresponded to deformation of bonds (0 < v+ − v− � v∗) with the maximum tension. At
v+ − v− > v∗, the deformation law was a nonlinear dependence determined by the points (v∗, σ∗) and (δc, σc), with
an increasing linear dependence at σc � σ∗ (linear hardening corresponding to elastoplastic deformation of bonds).

To determine the critical equilibrium state of the pre-fracture band at which the crack appears, we use
condition (4). From the solution obtained, we calculate the displacement v(x, 0) on the pre-fracture band:

v(x, 0) = −1 + κ0

2μ

x∫

−l

g(x) dx.

At x = λ, the distance between the faces of the pre-fracture band is

v(−λ, 0) = −1 + κ0

2μ

−λ∫

−l

g(x) dx.

Thus, the condition determining the critical intensity of internal heat sources in the material (loading parameter q∗)
at which a crack is formed at the point x = ±λ is

C(λ, p(λ))p(λ) = δc. (27)

The solution of the algebraic system (16), (17), (23), (26), (27) allows determining the critical intensity of
internal heat sources, the size of the pre-fracture band, and the forces in the bonds in the state of critical equilibrium
at which cracks start forming in the material.

Figure 2 shows the dimensionless length of the pre-fracture band d = (l − λ)/λ as a function of the dimen-
sionless heat-release intensity q∗/σs for a square grid of holes (σs is the tensile yield point of the material).

Figure 3 shows the forces in the bonds p/q∗ versus the dimensionless size d for a square grid of holes.
Figure 4 shows the critical heat-release intensity in the material (q∗)∗/σs as a function of the dimensionless

opening δ∗/(l − λ) at the point x = λ for a triangular grid of holes (δ∗ = πδcμ/[(1 + κ0)σs]).
An analysis of the critical equilibrium state of the perforated heat-releasing material at which the crack

appears reduces to a parametric study of the resolving algebraic system (16), (17), (23), (26) and the criterion of
crack emergence (27) with different laws of bond deformation, thermophysical and elastic constants of the material,
and geometric characteristics of the latter. The forces in the bonds and the opening of the pre-fracture band are
found directly by solving the resultant algebraic systems in each approximation.
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